ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО ПЕДАГОГИЧЕСКОГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ЦЕНТР ПОВЫШЕНИЯ КВАЛИФИКАЦИИ СПЕЦИАЛИСТОВ «ИНФОРМАЦИОННО-МЕТОДИЧЕСКИЙ ЦЕНТР» ВАСИЛЕОСТРОВСКОГО РАЙОН

«ПРИНЯТО»
Решение Педагогического совета
Протокол № 2
«24» октября 2025 г.
Председатель Педагогического совета
Н.В. Гапоненко

«УТВЕРЖДЕНО» Приказ № 93 -ИМС «24» октября 2025 г. Директор _______А. Л. Досова

Образовательная программа «Основные направления деятельности школьного методического объединения в условиях модернизации общего образования»

(Лицензия Комитета по образованию Санкт-Петербурга: Серия 78Л02 №0000792, регистрационный номер №1860 от 27 апреля 2016 года) Учебная программа дополнительного профессионального педагогического образования «Формирование основ инженерного мышления у детей дошкольного возраста»

(очно-заочная с применением дистанционных образовательных технологий и электронного обучения, 36 ч.)

Автор-разработчик программы:

Коренева-Леонтьева Е.В., методист ГБУ ДППО ЦПКС «Информационно-методический центр» Василеостровского района; Гришманов К.А., методист по информатизации ГБУ ДППО ЦПКС «Информационно-методический центр» Василеостровского района

Раздел 1 Характеристика программы

1.1. Цель реализации программы: совершенствование профессиональных компетенций педагогов дошкольного образования в области проектирования и реализации образовательного процесса, направленного на формирование основ инженерного мышления у детей дошкольного возраста в соответствии с требованиями ФГОС ДО.

1.2. Планируемые результаты обучения:

Таблица 1

Трудовая функция	Трудовое действие	Знать	Уметь
3.2.1	Планирование и	Специфика	Применять методы
Педагогическая	реализация	дошкольного	познавательного
деятельность по	образовательной	образования и	развития детей
реализации	работы в группе	особенностей	дошкольного
программ	детей раннего и/или	организации работы	возраста в
дошкольного	дошкольного	с детьми раннего и	соответствии с
образования	возраста в	дошкольного	образовательной
	соответствии с	возраста	программой
	федеральными		организации
	государственными		
	образовательными		
	стандартами и		
	основными		
	образовательными		
	программами		
3.2.1	Развитие	Современные	Владеть всеми
Педагогическая	профессионально	тенденции развития	видами
деятельность по	значимых	дошкольного	развивающих
реализации	компетенций,	образования	деятельностей
программ	необходимых для		дошкольника
дошкольного	решения		(познавательно-
образования	образовательных		исследовательской)
	задач развития детей		
	раннего и		
	дошкольного		
	возраста с учетом		
	особенностей		
	возрастных и		
	индивидуальных		
	особенностей их		
	развития		

1.3. Категория слушателей:

Педагоги образовательных организаций (воспитатели, старшие воспитатели, методисты), реализующие программы дошкольного образования.

- **1.4. Форма обучения** очно-заочная с применением дистанционных образовательных технологий и электронного обучения
- 1.5. Срок освоения программы: 36 часов.

Раздел 2 Содержание программы

2.1 Содержание программы

Таблица 1 Содержание программы

No	Наименование	Всего				
п/п	разделов (модулей) и тем	часов	Лекционные, часы	Практи ческие, часы	Самосто ятельна я работа, часы	Формы контроля
1	М.1 Теоретико- методологические основы развития инженерного мышления у дошкольников	8	4	2	2	
1.1	Самоопределение слушателей. Инженерное мышление как ключевая компетенция XXI века. Структура, компоненты и особенности развития в дошкольном возрасте.	2	2			Текущий контроль. Экспрессвопросы по ключевым понятиям лекции
1.2	STEM и STEAM- образование как современный подход к развитию инженерных навыков. Интеграция с ФГОС ДО.	2	2			Текущий контроль. Экспрессвопросы по ключевым понятиям лекции
1.3	Создание развивающей предметно-пространственной среды для технического творчества: STEAMлаборатория, центр конструирования.	4		2	2	Промежуточный контроль по модулю 1. Решение педагогического кейса (письменно).
2	М.2 Практикум по формированию базовых инженерных навыков и технологий	12	2	9	3	
2.1	Практикум «Удивительные сооружения: как научить дошкольника анализировать конструктивные особенности постройки».	3	1	2		Текущий контроль. Анализ предоставленн ых слушателем фото- и видеоматериа лов, а также текстовой рефлексии

2.2	Семинар-практикум «Физика для малышей: создаем простые механизмы» (рычаги, блоки, наклонные плоскости).	4	-	3	1	Текущий контроль. Анализ предоставленн ых слушателем фото- и видеоматериа лов, а также текстовой рефлексии
2.3	"Программируем без компьютера": Введение в основы алгоритмики и робототехники с использованием образовательных роботов (Bee-Bot, Cubetto).	5	1	4	2	Промежуточ ный контроль по модулю 2. Практическо е задание.
3	М.3 Проектирование образовательного процесса по развитию инженерного мышления	12	2	10	-	
3.1	Мастер-класс «Решаем инженерные задачи»: технология постановки и решения практических задач на конструирование и моделирование.	4	1	3		Анализ продуктов деятельности: оценка созданных моделей, конструкций, схем, алгоритмов.
3.2	Мастер-класс «Транспорт будущего»: Проектирование и конструирование различных видов транспорта из разных материалов.	4	-	4		Анализ продуктов деятельности: оценка созданных моделей, конструкций, схем, алгоритмов.
3.3	Разработка итогового проекта: от идеи до технологической карты. Консультация.	4	1	3		
4.	Итоговая аттестация	4	-	4		Защита итогового проекта: «Разработка технологическ ой карты образовательн ого события по развитию

				инженерного мышления».
Итого:	36	8	24	

2.2. Рабочая программа

Модуль 1. Теоретико-методологические основы развития инженерного мышления у дошкольников

1.1 Инженерное мышление как ключевая компетенция XXI века. Структура, компоненты и особенности развития в дошкольном возрасте.

Лекция: 2 часа.

Цель лекции: сформировать у слушателей целостное представление об инженерном мышлении как о системном подходе к решению задач, его структуре и значении для гармоничного развития ребенка-дошкольника.

Содержание. Актуальность темы. Мир 4К-компетенции. Что включает в себя инженерное мышление у дошкольников. Как развитие инженерного мышления способствует реализации целевых ориентиров. Определение инженерного мышления. Инженерный цикл в детском саду. Особенности развития инженерного мышления у дошкольников. Предпосылки и проявления в разных возрастных группах. Роль педагога: от инструктора к фасилитатору.

1.2 STEM и STEAM-образование как современный подход к развитию инженерных навыков. Интеграция с ФГОС ДО.

Лекция: 2 часа.

Цель лекции: раскрыть сущность STEM и STEAM-подходов, показать их потенциал для развития инженерных навыков у дошкольников и продемонстрировать практические способы интеграции этих подходов в образовательный процесс в соответствии с ФГОС ДО.

Содержание. Что такое STEM? Фундамент подхода. Ключевая идея. Почему появился STEAM? Принципы и практика STEAM-образования в детском саду. Ключевые принципы, пример, роль педагога. Интеграция STEAM-подхода с ФГОС ДО. Карты интеграции. Связь с целевыми ориентирами ФГОС ДО.

1.3 Создание развивающей предметно-пространственной среды для технического творчества: STEAM-лаборатория, центр конструирования.

Лекция: 4 часа.

Цель лекции: сформировать у слушателей компетенции по проектированию, созданию и эффективному использованию развивающей предметно-пространственной среды (РППС), способствующей развитию инженерного мышления и технического творчества дошкольников.

Содержание. РППС как инструмент развития: от ФГОС ДО к практике. Среда как «третий педагог». Требования ФГОС ДО к РППС. Центр конструирования и STEAM-лаборатория: сходства и различия. Классификация материалов. Организация пространства: правила «умного» хранения и доступа. Роль педагога: от хранителя порядка к провокатору идей. Проектируем педагогическую провокацию.

Модуль 2. Практикум по формированию базовых инженерных навыков и технологий

2.1 Практикум «Удивительные сооружения: как научить дошкольника анализировать конструктивные особенности постройки».

Лекция-инструктаж: 1 час.

Цель: дать слушателям теоретическую базу и пошаговый алгоритм обучения дошкольников анализу конструкций, подготовить к выполнению практической работы.

Содержание. Введение от «стройки» к «архитектуре». «Анатомия» постройки: Ключевые конструктивные элементы, понятные ребенку. Педагогические приемы обучения анализу. Практикум: 2 часа.

Цель: Самостоятельное прохождение слушателем этапов анализа и конструирования для закрепления полученных знаний и формирования практического навыка.

Задание для слушателей (выдается в виде текстового файла/инструкции на платформе):

Вам предстоит выступить в роли архитектора-аналитика. Ваша задача — проанализировать существующее сооружение и, используя подмеченные конструктивные особенности, создать собственную устойчивую постройку из ограниченных материалов.

Этап 1. Аналитик.

- 1. Внимательно изучите предложенную фотографию (например, фото Эйфелевой башни, римского акведука или просто прочного деревянного моста).
- 2. Заполните «Карту анализа сооружения».

Карта анализа сооружения:

Название/описание сооружения:

Какое у него основание (широкое, узкое, несколько опор)?

Из каких основных частей состоят "стены" или опоры?

Есть ли в конструкции повторяющиеся элементы (например, арки, треугольники, колонны)? Какие?

Как вы думаете, какой главный «секрет» прочности этого сооружения?

3. Сделайте скриншот или фото вашей заполненной «Карты анализа». (Это первый отчетный материал).

Этап 2. Инженер-конструктор.

Задача: построить максимально высокую и устойчивую башню, используя только следующие материалы: 15 листов бумаги формата А4 и 30 см скотча.

Условие устойчивости: Башня должна выдержать на своей вершине вес небольшой чашки или смартфона в течение 10 секунд.

Процесс:

Сначала продумайте и зарисуйте простую схему вашей будущей башни. Учтите принципы устойчивости, которые вы изучили в лекции и подметили на этапе анализа. (Сделайте фото вашей схемы – это второй отчетный материал).

Приступите к строительству. Вы можете скручивать бумагу в трубки, складывать гармошкой, делать треугольные опоры и т.д.

Проведите испытание: установите на вершину груз (чашку/смартфон).

Сделайте итоговую фотографию вашей башни с грузом на вершине. (Это третий отчетный материал).

Форма сдачи работы: загрузить на образовательную платформу три файла:

- 1. Фото/скриншот заполненной «Карты анализа».
- 2. Фото схемы вашей башни.
- 3. Итоговое фото устойчивой башни с грузом.

2.2 Семинар-практикум «Физика для малышей: создаем простые механизмы» (рычаги, блоки, наклонные плоскости).

Формат: Дистанционный практикум.

Цель: научить слушателей самостоятельно создавать и демонстрировать работу трех простых механизмов (рычаг, наклонная плоскость, блок) из подручных материалов, а также адаптировать эти эксперименты для образовательной деятельности с детьми дошкольного возраста.

Необходимые материалы (список предоставляется слушателям заранее):

Основа: Картон (от коробок), плотная бумага, пластиковые бутылки.

Оси и опоры: Карандаши, палочки для суши, деревянные шпажки, втулки от бумажных полотенец, катушки от ниток.

Рычаги: Линейки, картонные полоски, палочки от мороженого.

Грузы: Ластики, монеты, скрепки, небольшие игрушки, пластилин.

Крепеж: Скотч (малярный и обычный), резинки, веревка или прочная нить, клей, ножницы.

Содержание. Краткий обзор темы. Почему важно знакомить детей с основами физики через действие. Техника безопасности при работе с ножницами и мелкими деталями. Рычаг: Искусство равновесия и силы. Практическое задание №1: «Весы-балансир». Практическое задание №2: «Катапульта». Наклонная плоскость: Дорога вниз. Практическое задание №3: «Испытательный трек». Практическое задание: «Мини-подъемник». Проведение эксперимента.

Самостоятельная работа:

Задание: выбрать **один** из созданных механизмов и написать краткий (3-5 предложений) плансценарий «Как я познакомлю с этим механизмом детей старшей группы». Опишите, какую игровую проблему вы создадите (например, «Нужно поднять сокровища из глубокой пещеры» для блока).

Отчет: прислать написанный текст.

2.3 "Программируем без компьютера": Введение в основы алгоритмики и робототехники с использованием образовательных роботов (Bee-Bot, Cubetto).

Цель: сформировать у слушателей базовое понимание понятий «алгоритм» и «программа», познакомить с интерфейсом и принципами работы образовательных роботов Bee-Bot и Cubetto. Лекция-инструктаж. 1 час.

Содержание: понятие алгоритма. Ключевые свойства алгоритма. Зачем учить алгоритмике дошкольников. Знакомство с роботами Bee-Bot («Умная Пчелка») и Cubetto. Роль педагога: создание игровых полей и проблемных ситуаций, какие вопросы педагог может задать ребенку.

Практикум. 4 часа.

Цель: освоить базовые навыки программирования роботов Bee-Bot и Cubetto через решение практических задач. Работа будет проводиться с использованием онлайн-симуляторов и распечатываемых материалов.

Содержание. Программируем Bee-Bot. Задание 1.1. «Прямой путь». Задание 1.2. «Путь с поворотом». Задание 1.3. «Лабиринт». Задание 1.4. «Найди ошибку (Отладка)». Программируем Cubetto. Задание 2.1. «Собираем программу». Задание 2.2. «Знакомство с функцией».

Самостоятельная работа. Промежуточный контроль «Практическое задание».

Модуль 3. Проектирование образовательного процесса по развитию инженерного мышления

3.1 Мастер-класс "Решаем инженерные задачи": решение практических задач на конструирование, моделирование, проектирование

Общая продолжительность: 4 академических часа (1 час лекция-инструктаж + 3 часа практикум).

Необходимые материалы (список предоставляется слушателям заранее):

Конструкционные: 2-3 листа бумаги A4, 1 лист картона (не гофрированного, например, от папки), 10-15 коктейльных трубочек, 20-30 зубочисток.

Соединительные: Скотч, пластилин, клей-карандаш.

Инструменты: Ножницы, линейка.

Для испытаний: Две стопки книг (или коробки) одинаковой высоты, набор небольших одинаковых грузов (монеты, гайки, скрепки).

Лекция-инструктаж: "От идеи до изобретения"

Цель: дать слушателям четкий алгоритм решения инженерной задачи (инженерный цикл) и познакомить с базовыми принципами прочности конструкций, которые они будут использовать в практикуме.

Содержание: что такое инженерная задача? Отличие от обычной постройки (цель, ограничения, критерии успеха). Обзор инженерного цикла как универсального плана действий. Секреты прочности: базовые принципы конструирования (сила формы), принципы устойчивости.

Практикум «Инженерный вызов»

Цель: Самостоятельное прохождение слушателем полного инженерного цикла при решении трех практических задач с нарастающей сложностью.

Задача №1. «Бумажная колонна».

Задача №2. «Мост из трубочек»

Задача №3. «Башня-рекордсмен»

3.2 Мастер-класс «Транспорт будущего»: Проектирование и конструирование различных видов транспорта из разных материалов.

Цель: пройти полный цикл проектирования и конструирования трех различных видов транспорта, решая конкретные инженерные задачи и используя разные материалы для поиска оптимальных решений.

Необходимые материалы (список предоставляется слушателям заранее и носит рекомендательный характер): основа (корпус): Картонные коробки (от обуви, сока), пластиковые бутылки, втулки, одноразовые стаканчики и тарелки. Ходовая часть и движители: Коктейльные трубочки, деревянные шпажки (для осей), крышки от бутылок (колеса), воздушные шарики (реактивный двигатель), палочки от мороженого. Аэродинамические и несущие элементы: Бумага (А4, цветная), картон, ткань, полиэтиленовые пакеты. Крепеж и инструменты: Скотч (разных видов), клей (ПВА, термоклей), ножницы, канцелярский нож, степлер, резинки, веревка.

Содержание: напоминание об инженерном цикле и объяснение формата отчетности.

Инженерный вызов №1: Планетоход «Исследователь».

Задача: сконструировать наземное транспортное средство, которое сможет съехать с невысокой наклонной плоскости (например, с книги) и прокатиться по полу в прямом направлении не менее 1 метра, не развалившись.

Инженерный фокус: Прочность корпуса, надежность крепления осей, соосность колес (чтобы аппарат не уводило в сторону).

Рекомендуемые материалы: Картонная коробка/пластиковая бутылка (корпус), шпажки/трубочки (оси), крышки (колеса).

Продукт деятельности (для «Бортового журнала»):

- 1. Проект: Фото эскиза или схемы планетохода.
- 2. Прототип: Фото готовой модели с разных ракурсов.
- 3. Испытание: Короткое видео (до 15 секунд), где планетоход съезжает с пандуса и катится по прямой.
- 4. Выводы: Краткий письменный комментарий.

Инженерный вызов №2: Беспилотный глайдер «Почтальон» (1 час)

Задача: сконструировать летательный аппарат (планер/глайдер), который при запуске с рук сможет пролететь по воздуху максимальное расстояние.

Инженерный фокус: Аэродинамика, площадь и форма крыла, центр тяжести, балансировка.

Рекомендуемые материалы: Бумага, тонкий картон, скрепки (для утяжеления носа), скотч.

Продукт деятельности (для «Бортового журнала»):

- 1. Проект: Фото эскиза с разными вариантами формы крыла.
- 2. Прототип: Фото готового глайдера.
- 3. Испытание: Описание результата: «После трех запусков лучший результат моего глайдера 5 метров. Я добился этого, когда добавил скрепку на нос для лучшей балансировки». (Видео по желанию).

Инженерный вызов №3: Грузовая амфибия «Перевозчик» (1.5 часа)

Задача: создать транспортное средство, способное держаться на воде (в раковине, тазу, ванне) и выдержать груз из 10 одинаковых предметов (например, монет или крупных пуговиц), не перевернувшись и не утонув.

Инженерный фокус: Плавучесть, остойчивость (устойчивость к переворачиванию), водонепроницаемость корпуса.

Рекомендуемые материалы: Пластиковые бутылки, контейнеры от еды, пенопласт, скотч (для герметизации).

Продукт деятельности (для «Бортового журнала»):

- 1. Проект: Фото эскиза амфибии.
- 2. Прототип: Фото готовой модели.
- 3. Испытание: Фотография амфибии на воде с полной загрузкой (10 монет).
- 4. Выводы: Краткий письменный комментарий: «Моя амфибия, построенная по принципу катамарана из двух бутылок, успешно выдержала груз. Одиночная бутылка была менее устойчивой и переворачивалась».

Раздел 3 Формы аттестации и оценочные материалы

Текущий контроль

<u>Тема 1.</u>

Форма: Экспресс-вопросы по ключевым понятиям лекции

Цель: Быстрая проверка понимания основных терминов и идей, прозвучавших в лекции. Проводится устно в конце лекции.

- 1. Вопрос: чем «инженерный подход» к постройке моста отличается от простого конструирования моста?
- 2. Вопрос: Ребенок построил башню, она упала. Назовите пример «инженерного» вопроса, который может задать педагог.
- 3. Вопрос: Назовите три любых этапа инженерного цикла, как мы их адаптировали для детей.
- 4. Вопрос: Какова главная роль педагога в развитии инженерного мышления у детей? Одним словом.
- 5. Вопрос: кроме конструкторов LEGO, что еще можно положить в «инженерный уголок» для развития технического творчества? Назовите 2-3 примера.

Тема 2.

Форма: Экспресс-вопросы по ключевым понятиям лекции

Цель: проверить понимание разницы между STEM и STEAM, а также осознание принципа интеграции.

- 1. Вопрос: что принципиально нового добавляет буква "A" (Arts) в подход STEM?
- 2. Вопрос: Вы с детьми строите кормушку для птиц. Какая часть этой работы относится к "S" (Наука), а какая к "E" (Инженерия)?
- 3. Вопрос: почему STEAM-подход называют интегрированным?
- 4. Вопрос: приведите пример, как в одном STEAM-проекте можно решить задачу из образовательной области «Речевое развитие»?

5. Вопрос: какая главная цель STEAM-проекта в детском саду: получить идеальную, красивую постройку или научиться проходить через все этапы решения задачи, включая ошибки?

Тема 4.

Текущий контроль: анализ предоставленных слушателем фото- и видеоматериалов, а также текстовой рефлексии.

Поскольку формат дистанционный, прямое наблюдение заменяется анализом предоставленных слушателем отчетных материалов.

Критерии оценки («зачтено» / «не зачтено»):

«Зачтено» ставится, если:

- 1. Аналитическая работа выполнена осмысленно: В «Карте анализа» слушатель не просто описывает картинку, а пытается выделить конструктивные элементы (основание, опоры, повторяющиеся формы), используя понятия из лекции.
- 2. Прослеживается связь между анализом и практикой: В схеме и итоговой постройке видны инженерные решения, направленные на обеспечение устойчивости (например, широкое основание, использование треугольных ферм из скрученной бумаги, симметричные опоры).
- 3. Инженерная задача решена: Итоговая фотография демонстрирует, что башня построена, и она успешно выдерживает заданный вес, что подтверждает ее устойчивость.
- 4. Все три отчетных материала предоставлены.

<u>Тема 5.</u>

Текущий контроль: анализ предоставленных слушателем фото- и видеоматериалов, а также текстовой рефлексии.

Критерии оценки («зачтено» / «не зачтено»):

«Зачтено» ставится, если слушатель предоставил полный пакет отчетных материалов, а именно:

- 1. Фото весов-балансира: На фото видно, что конструкция функциональна.
- 2. Видео запуска катапульты: Видео демонстрирует, что механизм работает.
- 3. Серия из двух фото «Испытательного трека»: Фотографии отражают суть эксперимента с изменением угла наклона.
- 4. Видео работы «Мини-подъемника»: Видео подтверждает, что слушателю удалось создать работающую модель блока и поднять груз.
- 5. Текстовый файл с педагогическим сценарием: Сценарий логичен, соответствует возрасту детей и демонстрирует понимание, как адаптировать эксперимент для образовательных целей.

Что оценивает преподаватель ("наблюдает" через материалы):

- Результативность: удалось ли слушателю создать работающие модели всех трех механизмов.
- Аккуратность и изобретательность: насколько творчески слушатель подошел к использованию подручных материалов.
- Понимание сути эксперимента: демонстрируют ли отчетные материалы, что слушатель понял физический принцип работы механизма (например, правильно меняет угол наклона плоскости).
- Педагогическая компетентность: Способность перенести свой практический опыт в плоскость работы с детьми (оценивается по заключительному заданию).

Тема 7.

Текущий контроль: Анализ продуктов деятельности

Контроль осуществляется через проверку предоставленного слушателем «Инженерного дневника» — документа, в который собраны все продукты деятельности по трем задачам. Что анализируется (критерии оценки):

1. Результативность и выполнение Т3:

Все ли три конструкции созданы?

Соответствуют ли они заданным ограничениям по материалам?

Достигнута ли основная цель (колонна держит вес, мост соединяет опоры, башня стоит)?

2. Применение инженерных знаний (глубина понимания):

Анализ конструктивных решений: использует ли слушатель принципы, озвученные в лекции? Видны ли на фото моста и башни треугольные фермы? Имеет ли колонна форму, придающую ей жесткость (цилиндр, гармошка)?

Наличие этапа проектирования: Предоставлен ли эскиз для задачи №2? Насколько продуманным он выглядит?

3. Рефлексивные навыки (способность к самоанализу):

Качество описаний и самоанализа: насколько осмысленно слушатель описывает свои конструкции? Способен ли он выделить сильные и слабые стороны своего проекта?

Понимание причинно-следственных связей: В самоанализе башни, связывает ли слушатель ее устойчивость с шириной основания или использованием жестких фигур? В описании моста, видит ли он причину его прочности/хрупкости?

<u>Тема 8.</u>

Текущий контроль: Анализ продуктов деятельности

Контроль осуществляется через анализ «Инженерного бортового журнала», который слушатель загружает на платформу в виде единого документа (например, презентации или текстового файла с фотографиями).

Что анализируется (критерии оценки):

1. Завершённость и соответствие заданию:

Представлены ли проекты по всем трем «вызовам»?

Решена ли ключевая инженерная задача в каждом из проектов (планетоход катится, глайдер летит, амфибия не тонет с грузом)?

2. Инженерный подход:

Наличие этапа проектирования: есть ли эскизы/схемы? Демонстрируют ли они предварительное обдумывание конструкции?

Обоснованность конструктивных решений: видно ли, что выбор формы и материалов был направлен на решение задачи? (Например, широкая база у амфибии для остойчивости, большие крылья у глайдера, надежные оси у планетохода).

Свидетельства тестирования и доработки: Отражены ли в выводах или на видео результаты испытаний? Упоминает ли слушатель о том, что ему пришлось изменить в первоначальной конструкции для достижения цели?

3. Креативность и оригинальность:

Насколько творчески слушатель подошел к использованию материалов?

Есть ли в конструкциях оригинальные авторские находки, выходящие за рамки очевидных решений?

Присутствует ли эстетический компонент (дизайн, оформление)?

4. Качество рефлексии:

Насколько глубоко и осмысленно слушатель анализирует результаты своей работы в письменных выводах?

Способен ли он определить, какие именно конструктивные особенности привели к успеху или неудаче?

Промежуточный контроль Промежуточный контроль по Модулю 1:

Вариант 1.

Форма: Решение педагогического кейса (письменно).

Инструкция: Уважаемые слушатели, проанализируйте предложенную ситуацию и письменно ответьте на вопросы, опираясь на материал лекции.

Кейс: «Заколдованный уголок»

В старшей группе детского сада (дети 5-6 лет) есть уголок конструирования. Он аккуратно организован: в большом пластиковом ящике лежит конструктор LEGO Duplo, на полке стоят несколько собранных по инструкции моделей машин, рядом — корзина с крупными деревянными кубиками. Педагог, Мария Ивановна, жалуется: «Дети совсем не проявляют фантазии. Приходят, построят стандартную башенку из кубиков или немного повозят готовые машинки и через 5 минут уходят. Часто ссорятся из-за деталей LEGO, потому что всем нужны колеса, а их мало. Я им предлагаю построить зоопарк, но они не хотят».

Вопросы:

- 1. Диагностика проблемы: Опираясь на принципы организации РППС из лекции (доступность, вариативность, полифункциональность и т.д.), назовите и кратко поясните как минимум три ключевые ошибки в организации данного уголка конструирования.
- 2. План модернизации: предложите пять конкретных и малозатратных изменений/дополнений для этого уголка, чтобы превратить его в прототип STEAM-лаборатории. Объясните, какую инженерную или исследовательскую задачу поможет решить каждое из ваших нововведений. (Пример: добавить рулетки и линейки, чтобы дети могли измерять высоту построек и сравнивать их).
- 3. Роль педагога: Опишите три конкретных действия или «провокационных» вопроса, которые Мария Ивановна могла бы использовать на следующей неделе, чтобы «оживить» интерес детей к конструированию и подтолкнуть их к более сложной инженерной деятельности.

Вариант 2. Практическое задание.

Тема: Разработка авторского игрового поля и задания для образовательного робота (на выбор Bee-Bot или Cubetto).

Цель: продемонстрировать умение применять полученные навыки для создания собственного образовательного продукта.

Задание:

- 1. Выберите робота, с которым будете работать (Bee-Bot или Cubetto).
- 2. Придумайте тему для игрового поля, ориентированную на детей 5-6 лет (например, «Помоги Красной Шапочке дойти до бабушки», «Космическое путешествие», «Сокровища пиратов», «Поход в магазин»).
- 3. Нарисуйте (схематично на листе A4) или создайте в любом простом редакторе игровое поле размером 3х3 или 4х4 клетки. Обозначьте на нем «Старт», «Финиш» и 1-2 препятствия или промежуточных пункта.
- 4. Сформулируйте игровую задачу для ребенка (например: «Помоги космонавту долететь до планеты Марс, не столкнувшись с астероидом»).
- 5. Напишите правильный алгоритм (программу) для решения этой задачи.

Форма сдачи работы:

Слушатель предоставляет в систему обучения один документ (или 3 отдельных файла), содержащий: 1. Фото или скан вашего игрового поля. 2. Текстовое описание игровой задачи. 3. Записанный пошаговый алгоритм-решение.

Критерии оценки («зачтено» / «не зачтено»):

- Осмысленность и педагогическая ценность: Придуманная тема и задача интересны и соответствуют возрасту дошкольников.
- Корректность алгоритма: Предложенная последовательность команд правильно и эффективно решает поставленную игровую задачу.
- Соответствие требованиям: Задание выполнено в полном объеме, предоставлены все три компонента (поле, задача, решение).
- Понимание принципов работы робота: Алгоритм составлен с учетом особенностей выбранного робота (например, для Cubetto можно предложить решение с использованием функции, если это уместно).

Промежуточный контроль по Модулю 2:

Форма: Практическое задание.

Содержание: Слушателям необходимо разработать и представить карточку-схему для игры-эксперимента с одним из простых механизмов (например, рычагом) для детей старшей группы. В карточке должны быть отражены: цель, материалы, пошаговый алгоритм действий и прогнозируемый результат/вывод.

Критерии оценки:

- 1. Цель эксперимента (Максимум 2 балла)
- 2 балла (Высокий уровень): Цель сформулирована как проблемный вопрос или игровая задача, понятная ребенку 5-6 лет. Она мотивирует к деятельности и направлена на самостоятельное открытие.

Пример: «Как помочь маленькой мышке поднять тяжелого слона на качелях?» или «Узнаем, где нужно поставить опору, чтобы легко поднять стопку книг?».

1 балл (Средний уровень): Цель сформулирована корректно, но в «академическом» стиле, скорее для педагога, чем для ребенка. Она верна по сути, но не мотивирует.

Пример: «Познакомить с принципом работы рычага» или «Сформировать представление о точке опоры».

- 0 баллов (Низкий уровень): Цель отсутствует, не соответствует содержанию эксперимента или сформулирована неверно.
- 2. Материалы и оборудование (Максимум 2 балла)
- 2 балла (Высокий уровень): Список материалов полный, все компоненты просты, доступны (легко найти в группе детского сада), безопасны и вариативны. Указано необходимое количество.

Пример: «Линейка (30 см) — 1 шт., простой карандаш (граненый) — 1 шт., ластик «Слон» — 1 шт., маленькая игрушка «Мышка» — 1 шт.».

- 1 балл (Средний уровень): Список материалов в целом верный, но неполный (пропущен один из элементов) или содержит труднодоступные компоненты.
- 0 баллов (Низкий уровень): Список материалов отсутствует или содержит небезопасные для детей предметы.
- 3. Пошаговый алгоритм действий (Максимум 3 балла)
- 3 балла (Высокий уровень): Алгоритм представлен в виде четкой, логичной последовательности из
- 3-5 простых шагов. Каждый шаг описан понятным для ребенка языком (глаголы в повелительном наклонении: «Положи», «Поставь», «Нажми»). Алгоритм визуализирован с помощью простых иконок или схематичных рисунков.

- 2 балла (Средний уровень): Алгоритм логичен и правилен, но изложен сложным, «взрослым» языком. Визуальная поддержка отсутствует или минимальна. Ребенок не сможет выполнить действия, опираясь только на карточку.
- 1 балл (Низкий уровень): Последовательность шагов нарушена, нелогична или приводит к неверному результату. Описание шагов нечеткое, запутанное.
- 0 баллов (Неудовлетворительно): Алгоритм отсутствует.
- 4. Прогнозируемый результат и вывод (Максимум 2 балла)
- 2 балла (Высокий уровень): Вывод сформулирован как детское открытие, простыми словами описывающее причинно-следственную связь, которую ребенок может установить в ходе эксперимента. Он напрямую отвечает на вопрос, поставленный в цели.

Пример: «Оказывается, если опору (карандаш) подвинуть ближе к тяжелому слону, то мышка сможет его поднять!».

1 балл (Средний уровень): Вывод является правильным, но сформулирован как научный факт, с использованием сложных терминов.

Пример: «Чем длиннее плечо рычага, к которому приложена сила, тем меньшее усилие требуется для поднятия груза».

- 0 баллов (Низкий уровень): Вывод отсутствует, неверен или не связан с проведенным экспериментом.
- 5. Общее оформление и педагогический дизайн (Максимум 2 балла)
- 2 балла (Высокий уровень): Карточка имеет привлекательный и понятный дизайн. Структура четкая, информация легко читается. Используются визуальные элементы (рамки, иконки, цветовые акценты), которые помогают ребенку ориентироваться и вызывают интерес. Карточка является полноценным дидактическим материалом.
- 1 балл (Средний уровень): Карточка оформлена аккуратно, но представляет собой сплошной текст без четкого зонирования и визуальной поддержки. Она функциональна, но не привлекательна для ребенка.
- 0 баллов (Низкий уровень): Оформление небрежное, информация представлена хаотично, текст трудночитаем.

Итоговая оценка:

- 9 11 баллов Высокий уровень (зачтено): Слушатель продемонстрировал глубокое понимание темы и отличные педагогические навыки. Карточка является качественным, готовым к использованию дидактическим пособием.
- 5 8 баллов Средний уровень (зачтено, рекомендуется доработка): Слушатель в целом справился с заданием, но имеются недочеты в адаптации материала для детей или в оформлении. Карточку можно использовать после внесения корректировок.
- 0 4 балла Низкий уровень (не зачтено): Слушатель не справился с заданием. Допущены грубые ошибки в содержании, либо материал не адаптирован для целевой аудитории. Требуется существенная переработка.

Итоговая аттестация

Цель: Комплексная оценка профессиональных компетенций, сформированных в ходе освоения всей программы.

Форма: Защита итогового проекта.

Тема проекта: «Разработка технологической карты образовательного события (квеста, проекта, занятия) по развитию инженерного мышления у детей (возрастная группа на выбор)».

Структура проекта:

- 1. Паспорт проекта: Тема, возрастная группа, цель, задачи, интеграция образовательных областей.
- 2. Инженерная задача: Четкая формулировка проблемы, которую предстоит решить детям (например, «построить мост через реку, чтобы помочь зверятам перебраться», «создать ветряную мельницу для Карлсона»).

- 3. Материалы и оборудование: Перечень необходимых конструкторов, бросового материала, инструментов.
- 4. Технологическая карта: Подробное описание этапов деятельности педагога и детей (мотивационный, планирование, реализация, рефлексия).
- 5. Ожидаемые результаты: Описание предполагаемых конструкций и выводов, которые сделают дети.

Критерии оценки итоговой аттестационной работы

Задание: Разработка технологической карты образовательного события (квеста, проекта, занятия) по развитию инженерного мышления у детей (возрастная группа на выбор).

Общая шкала оценки: 100 баллов.

1. Структура и формальное соответствие (Максимум 15 баллов)

Этот блок оценивает, насколько корректно и полно оформлен документ как технологическая карта.

Полнота структуры (10 баллов):

Присутствуют все обязательные разделы: тема, возрастная группа, цель, задачи (образовательные, развивающие, воспитательные), интеграция образовательных областей, материалы и оборудование, предварительная работа, ход события (с четким делением на этапы), рефлексия, предполагаемый результат.

Корректность формулировок (5 баллов):

Цель и задачи сформулированы в соответствии с педагогическими требованиями (диагностично, ориентировано на деятельность детей). Используется профессиональная лексика.

2. Педагогическая ценность и содержание (Максимум 40 баллов)

Этот блок оценивает качество и продуманность самого образовательного события.

Оригинальность и мотивационный потенциал (10 баллов):

Наличие интересной игровой легенды, сюжета (квест, проектная проблема). Событие способно увлечь и мотивировать детей к деятельности, а не является формальным набором заданий.

Возрастная адекватность (10 баллов):

Сложность задачи, предлагаемые материалы, длительность этапов и ожидаемые результаты соответствуют психофизиологическим особенностям выбранной возрастной группы.

Продуманность организации деятельности детей (15 баллов):

Четко прописаны формы работы (индивидуальная, парная, групповая). Описаны методы и приемы, используемые педагогом на каждом этапе (проблемные вопросы, демонстрация, поощрение, помощь). Роль педагога — фасилитатор, а не инструктор.

Безопасность и доступность (5 баллов):

Предложенные материалы и оборудование безопасны, доступны для использования в условиях ДОУ и вариативны.

3. Глубина проработки инженерного компонента (Максимум 45 баллов)

Это ключевой блок, который оценивает, насколько событие действительно развивает инженерное мышление, а не просто навыки конструирования.

Наличие и качество инженерной задачи (15 баллов):

В основе события лежит открытая, проблемная задача, имеющая несколько вариантов решения (например, «Как построить мост через реку, чтобы он выдержал вес машинки?», а не «Постройте мост по этой схеме»). Присутствуют четкие ограничения (по материалам, времени) и критерии успеха.

Отражение инженерного цикла в ходе события (20 баллов):

В технологической карте четко прослеживаются все этапы инженерного цикла:

1. Постановка проблемы: Дети понимают, зачем они что-то создают.

- 2. Планирование и проектирование: Предусмотрено время и созданы условия для того, чтобы дети могли обдумать и зарисовать/обсудить свою идею *перед* началом конструирования.
- 3. Создание: Непосредственно процесс конструирования.
- 4. Испытание: Организован этап проверки созданного объекта на соответствие критериям успеха.
- 5. Рефлексия и улучшение: Предусмотрена возможность проанализировать результаты испытаний («Почему мост сломался?») и внести изменения в конструкцию для ее улучшения.

Развитие сопутствующих (soft skills) компетенций (10 баллов):

Прописаны приемы, направленные на развитие у детей умения работать в команде, договариваться, аргументировать свой выбор, анализировать ошибки и не бояться их совершать.

Шкала перевода баллов в оценку:

- 86 100 баллов Отлично: Проект демонстрирует глубокое понимание темы, отличается оригинальностью, методической грамотностью и четкой инженерной направленностью. Технологическая карта является готовым к внедрению в практику высококачественным продуктом.
- 70 85 баллов Хорошо: Проект выполнен на хорошем уровне, соответствует основным требованиям. Инженерный цикл прослеживается, но некоторые этапы (например, планирование или улучшение) могут быть проработаны недостаточно глубоко. Возможны незначительные недочеты в оформлении или формулировках.
- 51-69 баллов Удовлетворительно: Проект в целом соответствует заданию, но содержит существенные недочеты. Инженерный компонент может быть сведен преимущественно к конструированию по образцу, инженерный цикл прослеживается слабо. Цели и задачи могут быть сформулированы нечетко. Требуется доработка.
- 0-50 баллов Неудовлетворительно: Работа не соответствует теме задания. Инженерный компонент отсутствует, технологическая карта оформлена с грубыми ошибками, содержание не соответствует возрасту детей. Работа не может быть засчитана.

Раздел 4 Организационно-педагогические условия реализации программы

4.1. Организационно-методическое и информационное обеспечение программы

Нормативные документы:

- 1. Федеральный закон «Об образовании в Российской Федерации» от 29.12.2012 № 273Ф3.
- 2. Постановление Правительства РФ от 26.12.2017 № 1642 «Об утверждении государственной программы Российской Федерации "Развитие образования"».
- 3. Государственная программа Российской Федерации «Развитие образования» Стратегические приоритеты в сфере реализации государственной программы Российской Федерации "Развитие образования" до 2030 года (в ред. Постановления Правительства РФ от 07.10.2021 № 1701).
- 4. Стратегия развития воспитания в РФ на период до 2025 года, утвержденная распоряжением Правительства РФ от 29.05.2015 № 996р.
- 5. Порядок организации и осуществления образовательной деятельности по основным общеобразовательным программам образовательным программам дошкольного образования, утвержденный приказом Минпросвещения от 31.07.2020 № 373.

- 6. Письмо Минпросвещения России от 11.05.2021 № СК123/07. Федеральный государственный образовательный стандарт дошкольного образования (ФГОС ДО), утверждён приказом Минобрнауки России от 17 октября 2013 г. № 1155 в действующей редакции.
- 7. Федеральная образовательная программа дошкольного образования Приказ Минпросвещения России от 25.11.2022 N 1028 Об утверждении федеральной образовательной программы дошкольного образования (За регистрировано в Минюсте России 28.12.2022 N 71847).
- 8. Санитарно-эпидемиологические требования к образовательным организациям, утвержденные Постановлением Главного государственного санитарного врача РФ от 28 сентября 2020 г. № 28.
- 9. Гигиенические нормативы и требования к обеспечению безопасности и безвредности для человека факторов среды обитания, утв. Постановлением Главного государственного санитарного врача РФ от 28 января 2021 г. № 2.
- 10. Приказ Минпросвещения России от 06.11.2024 № 779 Об утверждении перечня документов, подготовка которых осуществляется педагогическими работниками при реализации основных общеобразовательных программ, образовательных программ среднего профессионального образования

Литература

- 1. Андрюшина Т. В. (канд. пед. наук) Психологические условия и средства развития пространственного мышления личности : Автореф. дис. на соиск. учен. степ. д.психол.н. : Спец. 19.00.01 / Андрюшина Т.В. ; [Новосиб. гос. пед. ун-т]. Новосибирск, 2000.
- Гуткович И. Я., Логачева Э. И., Сидорчук Т. А. Формирование основ инженерного мышления у дошкольников: методическое пособие / И. Я. Гуткович, Э. И. Логачева, Т. А. Сидорчук; Муниципальное бюджетное дошкольное образовательное учреждение детский сад № 186 "Волгарик". - Ульяновск: Мастер-Студия, 2024.
- 3. Ескина Н.В., Сарамуд И.А., Смирнова А. Д. (педагог, физика, образоват. технологии) Дни НТИ в школе: методические рекомендации / Ескина Н.В., Сарамуд И.А., Смирнова А.Д. [и др.]; Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 255 с углубленным изучением отдельных учебных предметов Адмиралтейского района Санкт-Петербурга. Санкт-Петербург: Медиапапир, 2024.
- 4. Недоборенко Л. В., Сундукова А. Х., Буршит И. Е. Что, зачем и почему? или Как развивать инженерное и творческое мышление : учебно-методическое пособие по развитию инженерного и творческого мышления / Л.В. Недоборенко, А.Х. Сундукова, И.Е. Буршит. Таганрог : Ступин С.А., 2017.
- 5. Николаева А. В. (педагог, доп. образование), Плетнева С.И., Приезжева Х.Ю. STEM-игры для начальной и основной школы : методические рекомендации / Николаева А.В.,
- 6. Плетнева С.И., Приезжева Х.Ю. [и др.]; Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 255 с углубленным изучением отдельных учебных предметов Адмиралтейского района Санкт-Петербурга. Санкт-Петербург: Медиапапир, 2024.

4.2. Материально-технические условия реализации программы

Основой реализации программы является система дистанционного обучения. ИОС обеспечивает каждому слушателю персонализированный доступ к образовательным ресурсам из любой точки, имеющей выход в интернет. Чат для обсуждения учебных вопросов по каждому модулю, обмена опытом между слушателями (для оперативной связи с педагогом). Учебно-методическое обеспечение (в цифровом формате): текстовые материалы (конспекты лекций, статьи, методические рекомендации в формате PDF для скачивания и изучения в офлайн-режиме) и презентации: наглядные материалы к каждой лекции в формате PDF. Банк практических материалов: видео-кейсы.

Со стороны слушателя (минимальные технические требования): Персональный компьютер или ноутбук с актуальной операционной системой. Стабильный доступ к сети Интернет со скоростью, достаточной для просмотра видеоконтента (от 5 Мбит/с). Актуальная версия веб-браузера. Программное обеспечение для работы с документами (например, MS Office или его бесплатные отечественные аналоги). Программа для просмотра PDF-файлов.